Quantcast
Channel: Related – sciencesprings
Viewing all articles
Browse latest Browse all 160

From The DOE’s Lawrence Berkeley National Laboratory: “A Cleaner Way to Produce Ammonia”

$
0
0

From The DOE’s Lawrence Berkeley National Laboratory

5.28.24
Rachel Berkowitz

New research reveals how a surprising catalyst can help to efficiently convert nitrogen into useful products under ambient conditions.

1
Polly Arnold, Division Director of Berkeley Lab’s Chemical Sciences Division, with Matt Hernandez, a graduate student researcher. Hernandez is using a glove box in the lab where the ammonia research was conducted. Credit: Thor Swift/Berkeley Lab

Ammonia is the starting point for the fertilizers that have secured the world’s food supply for the last century. It’s also a main component of cleaning products, and is even considered as a future carbon-free replacement for fossil fuels in vehicles. But synthesizing ammonia from molecular nitrogen is an energy-intensive industrial process, due to the high temperatures and pressures at which the standard reaction proceeds. Scientists from the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) now have a new way to produce ammonia that works at room temperature and pressure.

Since 1909, the industry-wide standard for synthesizing ammonia has involved converting molecular nitrogen (dinitrogen, N2) via a reaction with hydrogen gas using metal-based catalysts, known as the Haber-Bosch process. Polly Arnold, a senior staff scientist and the director of the Chemical Sciences Division at Berkeley Lab, has found that instead, catalysts made from abundant so-called rare-earth metals can facilitate this reaction at room temperature.

“Nobody expected rare earth metals to do this reaction. They’ve expanded our arsenal of potential ambient condition catalysts,” says Arnold, who is also a professor of chemistry at UC Berkeley.

Rare-earth metals are the silvery-white, soft, heavy elements that make up all the non-radioactive metals from the group at the bottom of the periodic table, and have attracted plenty of interest for applications in electronics, lasers, and magnetic materials. “Despite their name, rare-earth metals are not actually rare,” said Anthony Wong, a postdoctoral researcher in Arnold’s group at UC Berkeley and affiliate in Berkeley Lab’s Chemical Sciences Division and lead author on the paper in Chem Catalysis that describes the work. “Some are nearly as common as copper, and their salts are less toxic than metals that are already used in catalysis,” he added.

The exciting thing about rare-earth metals, from a fundamental perspective, is that they have a set of additional electrons that their transition metal counterparts do not have. This gives them interesting opto-magnetic properties – but chemists don’t fully understand if and how the electrons might be used in reactions. Examining reactions involving rare earth metals is an attractive tool for understanding their electronic structures and how their structures can apply to new reactivity.

Rare earths have been known to bind molecular nitrogen since the 1990s. However, until now, researchers have not been able to use them to create nitrogen-functionalized chemicals like ammonia or amines catalytically from N2. Wong, Arnold, and their colleagues designed compounds that joined two rare-earth metals with simple linkages made from phenolates based on a simple antioxidant used widely in food. The resulting structure formed a rectangular cavity. Molecular nitrogen that diffused into the cavity formed bonds with the metals at either end, which activates the gas. Then, electrons introduced into the cavity from a potassium source attacked the activated nitrogen, cleaving its bonds. In all its standard forms, converted nitrogen forms three covalent bonds to hydrogen atoms, or other reactants, resulting in symmetrical ammonia or amines.

“Our catalysts activate and hold the dinitrogen, while different reagents come in and react to form different products,” says Arnold. She intends next to use electrodes instead of the potassium reagent as a source of electrons, since these can be renewable if they derive from solar cells, for example.

The scientists will next explore how to use rare earths to synthesize additional nitrogen-containing products by tuning the shape and size of the letterbox-shaped cavity. “Our next step is to explore and understand which rare-earth metal properties impact the chemistry,” said Wong.

The new process is not going to replace the widespread industrial Haber-Bosch process. Global ammonia production has hovered around 200 million metric tons annually since 2020, and the existing tools are optimized and extremely efficient at large scale. But the process consumes around 2% of the world’s energy use and creates geographic inequities in the availability of ammonia. “That’s not food justice,” said Arnold. Wong added, “we need better ways of producing ammonia that are less energy intensive and can be conducted at ambient temperatures and pressures to help with food and energy security.” Their patented technology could bring fertilizers and chemically specific nitrogen products to regions without a pipeline, and at a much lower cost.

Some of this research was conducted at the Advanced Light Source [below], a Department of Energy Office of Science User Facility located at Berkeley Lab.

The technology is now available for licensing; contact ipo@lbl.gov.

This research is funded by the Department of Energy’s Office of Science.

See the full article here .

Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct.

five-ways-keep-your-child-safe-school-shootings

Please help promote STEM in your local schools.

Stem Education Coalition

LBNL campus
Berkeley Lab campus Aerial View

Bringing Science Solutions to the World

In the world of science, The Lawrence Berkeley National Laboratory (Berkeley Lab) is synonymous with “excellence.” A number of Nobel prizes are associated with Berkeley Lab. Lab scientists are members of the The National Academy of Sciences, one of the highest honors for a scientist in the United States. A number of our scientists have won the National Medal of Science, our nation’s highest award for lifetime achievement in fields of scientific research. A number of our engineers have been elected to the The National Academy of Engineering, and a number of our scientists have been elected into The Institute of Medicine. In addition, Berkeley Lab has trained thousands of university science and engineering students who are advancing technological innovations across the nation and around the world.

Berkeley Lab is a member of the national laboratory system supported by The DOE through its Office of Science. It is managed by the University of California-Berkeley and is charged with conducting unclassified research across a wide range of scientific disciplines. Located on a 202-acre site in the hills above The University of California-Berkeley campus that offers spectacular views of the San Francisco Bay, Berkeley Lab employs a large number of scientists, engineers and support staff. Technologies developed at Berkeley Lab have generated billions of dollars in revenues, and thousands of jobs. Savings as a result of Berkeley Lab developments in lighting and windows, and other energy-efficient technologies, have also been in the billions of dollars.

Berkeley Lab was founded in 1931 by Ernest Orlando Lawrence, a University of California-Berkeley physicist who won the 1939 Nobel Prize in physics for his invention of the cyclotron, a circular particle accelerator that opened the door to high-energy physics. It was Lawrence’s belief that scientific research is best done through teams of individuals with different fields of expertise, working together. His teamwork concept is a Berkeley Lab legacy that continues today.

History

1931–1941

The laboratory was founded on August 26, 1931, by Ernest Lawrence, as the Radiation Laboratory of the University of California-Berkeley, associated with the Physics Department. It centered physics research around his new instrument, the cyclotron, a type of particle accelerator for which he was awarded the Nobel Prize in Physics in 1939.

E.O. Lawrence’ first cyclotron.

LBNL 88 inch cyclotron.

LBNL 88 inch cyclotron.

Throughout the 1930s, Lawrence pushed to create larger and larger machines for physics research, courting private philanthropists for funding. He was the first to develop a large team to build big projects to make discoveries in basic research. Eventually these machines grew too large to be held on the university grounds, and in 1940 the lab moved to its current site atop the hill above campus. Part of the team put together during this period includes two other young scientists who went on to establish large laboratories; J. Robert Oppenheimer founded The DOE’s Los Alamos Laboratory, and Robert Wilson founded The DOE’s Fermi National Accelerator Laboratory.

1942–1950

Leslie Groves visited Lawrence’s Radiation Laboratory in late 1942 as he was organizing the Manhattan Project, meeting J. Robert Oppenheimer for the first time. Oppenheimer was tasked with organizing the nuclear bomb development effort and founded today’s DOE Los Alamos National Laboratory to help keep the work secret. At the RadLab, Lawrence and his colleagues developed the technique of electromagnetic enrichment of uranium using their experience with cyclotrons. The “calutrons” (named after the University) became the basic unit of the massive Y-12 facility in Oak Ridge, Tennessee. Lawrence’s lab helped contribute to what have been judged to be the three most valuable technology developments of the war (the atomic bomb, proximity fuse, and radar). The cyclotron, whose construction was stalled during the war, was finished in November 1946. The Manhattan Project shut down two months later.

1951–2018

After the war, the Radiation Laboratory became one of the first laboratories to be incorporated into the Atomic Energy Commission (AEC) (now The Department of Energy . The most highly classified work remained at Los Alamos, but the RadLab remained involved. Edward Teller suggested setting up a second lab similar to Los Alamos to compete with their designs. This led to the creation of an offshoot of the RadLab (now The DOE’s Lawrence Livermore National Laboratory) in 1952. Some of the RadLab’s work was transferred to the new lab, but some classified research continued at Berkeley Lab until the 1970s, when it became a laboratory dedicated only to unclassified scientific research.

Shortly after the death of Lawrence in August 1958, the UC Radiation Laboratory (both branches) was renamed the Lawrence Radiation Laboratory. The Berkeley location became the Lawrence Berkeley Laboratory in 1971, although many continued to call it the RadLab. Gradually, another shortened form came into common usage, LBNL. Its formal name was amended to Ernest Orlando Lawrence Berkeley National Laboratory in 1995, when “National” was added to the names of all DOE labs. “Ernest Orlando” was later dropped to shorten the name. Today, the lab is commonly referred to as “Berkeley Lab”.

The Alvarez Physics Memos are a set of informal working papers of the large group of physicists, engineers, computer programmers, and technicians led by Luis W. Alvarez from the early 1950s until his death in 1988. Over 1700 memos are available on-line, hosted by the Laboratory.

The lab remains owned by the Department of Energy , with management from the University of California-Berkeley. Companies such as Intel were funding the lab’s research into computing chips.

Science mission

From the 1950s through the present, Berkeley Lab has maintained its status as a major international center for physics research, and has also diversified its research program into almost every realm of scientific investigation. Its mission is to solve the most pressing and profound scientific problems facing humanity, conduct basic research for a secure energy future, understand living systems to improve the environment, health, and energy supply, understand matter and energy in the universe, build and safely operate leading scientific facilities for the nation, and train the next generation of scientists and engineers.

The Laboratory’s 20 scientific divisions are organized within six areas of research: Computing Sciences; Physical Sciences; Earth and Environmental Sciences; Biosciences; Energy Sciences; and Energy Technologies. Berkeley Lab has six main science thrusts: advancing integrated fundamental energy science; integrative biological and environmental system science; advanced computing for science impact; discovering the fundamental properties of matter and energy; accelerators for the future; and developing energy technology innovations for a sustainable future. It was Lawrence’s belief that scientific research is best done through teams of individuals with different fields of expertise, working together. His teamwork concept is a Berkeley Lab tradition that continues today.

Berkeley Lab operates five major National User Facilities for the DOE Office of Science:

The Advanced Light Source (ALS) is a synchrotron light source with 41 beam lines providing ultraviolet, soft x-ray, and hard x-ray light to scientific experiments.

The DOE’s Lawrence Berkeley National Laboratory Advanced Light Source.

The ALS is one of the world’s brightest sources of soft x-rays, which are used to characterize the electronic structure of matter and to reveal microscopic structures with elemental and chemical specificity. About 2,500 scientist-users carry out research at ALS every year. Berkeley Lab is proposing an upgrade of ALS which would increase the coherent flux of soft x-rays by two-three orders of magnitude.

Berkeley Lab Laser Accelerator (BELLA) Center

A view of BELLA, the Berkeley Lab Laser Accelerator. Credit: Roy Kaltschmidt-Berkeley Lab.
LBNL FLEXLAB.

The DOE Joint Genome Institute supports genomic research in support of the DOE missions in alternative energy, global carbon cycling, and environmental management. The JGI’s partner laboratories are Berkeley Lab, the DOE’s Lawrence Livermore National Laboratory, the DOE’s Oak Ridge National Laboratory (ORNL), the DOE’s Pacific Northwest National Laboratory (PNNL), and the DOE’s HudsonAlpha Institute for Biotechnology . The JGI’s central role is the development of a diversity of large-scale experimental and computational capabilities to link sequence to biological insights relevant to energy and environmental research. A large number of scientist-users take advantage of JGI’s capabilities for their research every year.

LBNL Molecular Foundry

The LBNL Molecular Foundry is a multidisciplinary nanoscience research facility. Its seven research facilities focus on Imaging and Manipulation of Nanostructures; Nanofabrication; Theory of Nanostructured Materials; Inorganic Nanostructures; Biological Nanostructures; Organic and Macromolecular Synthesis; and Electron Microscopy. Approximately 700 scientist-users make use of these facilities in their research every year.

The DOE’s NERSC National Energy Research Scientific Computing Center is the scientific computing facility that provides large-scale computing for the DOE’s unclassified research programs. Its current systems provide over 3 billion computational hours annually. NERSC supports 6,000 scientific users from universities, national laboratories, and industry.

DOE’s NERSC National Energy Research Scientific Computing Center at Lawrence Berkeley National Laboratory.

Cray Cori II supercomputer at National Energy Research Scientific Computing Center at DOE’s Lawrence Berkeley National Laboratory, named after Gerty Cori, the first American woman to win a Nobel Prize in science.

Cray Shasta Perlmutter SC18 AMD Epyc Nvidia pre-exascale supercomputer.

NERSC is a DOE Office of Science User Facility.

The DOE’s Energy Science Network is a high-speed network infrastructure optimized for very large scientific data flows. ESNet provides connectivity for all major DOE sites and facilities, and the network transports roughly 35 petabytes of traffic each month.

Berkeley Lab is the lead partner in the DOE’s Joint Bioenergy Institute (JBEI), located in Emeryville, California. Other partners are the DOE’s Sandia National Laboratory, the University of California (UC) campuses of Berkeley and Davis, the Carnegie Institution for Science , and the DOE’s Lawrence Livermore National Laboratory (LLNL). JBEI’s primary scientific mission is to advance the development of the next generation of biofuels – liquid fuels derived from the solar energy stored in plant biomass. JBEI is one of three new U.S. Department of Energy (DOE) Bioenergy Research Centers (BRCs).

Berkeley Lab has a major role in two DOE Energy Innovation Hubs. The mission of the Joint Center for Artificial Photosynthesis (JCAP) is to find a cost-effective method to produce fuels using only sunlight, water, and carbon dioxide. The lead institution for JCAP is the California Institute of Technology and Berkeley Lab is the second institutional center. The mission of the Joint Center for Energy Storage Research (JCESR) is to create next-generation battery technologies that will transform transportation and the electricity grid. The DOE’s Argonne National Laboratory leads JCESR and Berkeley Lab is a major partner.


Viewing all articles
Browse latest Browse all 160

Trending Articles