Quantcast
Channel: Related – sciencesprings
Viewing all articles
Browse latest Browse all 160

From The National Institute of Standards and Technology: “NIST Develops New Testing System for Carbon Capture in Fight Against Global Warming”

$
0
0

From The National Institute of Standards and Technology

4.25.24
Lawrence Goodman
lawrence.goodman@nist.gov

1
In a new carbon capture testing apparatus, synthetic air flows through a column. The sorbent traps and captures the carbon molecules. The device measures how fast the sorbent becomes saturated with CO₂.
Credit: N. Hanacek/NIST

_____________________
Here’s how the testing apparatus works:

-Synthetic air — a combination of nitrogen, argon, oxygen, helium and CO₂ — is pumped into a box about the size of a home printer. Valves and controllers outside the box ensure the air flows with about the same force as the wind on a breezy day.
-Inside the box, the air is funneled into a thin column packed with a solid sorbent. The NIST team initially used zeolite beads, a mineral that attracts and captures CO₂ in the pores of its crystalline structure. They are now testing additional materials more commonly used in DAC plants.
-Beneath the column sits a mass spectrometer, an instrument that identifies gaseous molecules based on their molecular mass. It measures how much CO₂ passes through the sorbent rather than being adsorbed. The amount passing through increases over time as the sorbent becomes saturated and, like a water-logged sponge, can no longer capture CO₂.
-By analyzing the data gathered by the mass spectrometer, the researchers produce what’s called a breakthrough curve, which plots how fast the sorbent becomes saturated with CO₂. This provides a precise measurement of the sorbent’s performance.
-NIST researchers are upgrading the apparatus to pipe in moisture to test sorbents under varying amounts of humidity to match real-world conditions.
_____________________
-To combat global warming, companies are building direct air capture (DAC) facilities worldwide to remove carbon from the atmosphere.
-NIST has developed a new method for testing the materials used in these plants to capture the carbon.
-The agency plans to release an early-stage reference material that the DAC industry can use to test equipment.
_____________________

More than 100 facilities designed to remove carbon dioxide (CO₂) from the atmosphere are in various stages of development around the world. In the United States, the first direct air capture (DAC) plant opened last fall in Northern California. The U.S. Department of Energy is funding four more regional DAC hubs with billions of dollars in seed money.

Now, the National Institute of Standards and Technology (NIST) aims to facilitate the development of this rapidly emerging technology that the International Energy Agency (IEA) says will be a “key technology” for combating global warming.

NIST scientists have developed a high-precision testing apparatus for benchmarking the performance of the materials, called sorbents, used in DAC plants to trap and remove carbon from the air.

The apparatus will enable the agency to develop research-grade test material (RGTM) sorbents for the DAC industry. These reference materials will be tested in the apparatus and validated to remove a certain amount of CO₂ from a given amount of air.

2
Two of the apparatuses designed to test materials used in DAC plants to trap and remove carbon from the air.
Credit: J. Manion/NIST

Companies will have the option of using the RGTMs to calibrate their equipment, making sure they get the same results as NIST does when they test the agency’s materials. They can also use the materials as part of their research and development process, benchmarking the carbon-removal performance of their materials against NIST’s.

“Our test and the RGTMs will allow for the critical and impartial evaluation of new, emerging DAC materials and a more comprehensive understanding of their performance,” said NIST research chemist Sean McGivern. “We hope this will help advance the development of measurements and standards for the DAC industry.”

Global warming results when greenhouse gases, including carbon dioxide, methane, nitrous oxide and fluorinated compounds, accumulate in the atmosphere. The gases absorb infrared radiation, leading to higher temperatures near the Earth’s surface.

There are natural methods for removing carbon from the air, such as planting trees and soil restoration. Still, scientists believe additional approaches will be needed to fight global warming.

Typically, DAC plants use giant fans to suck in air, which is then pushed through a filter containing sorbents. When heated (or through another method), the sorbent material releases, or desorbs, the carbon. The carbon can be buried deep in the ground or repurposed for industrial uses such as concrete and synthetic fuels.

Sorbents can either be solids or liquids. NIST’s testing apparatus is only for solid sorbents, such as ion exchange resin, polymer-impregnated mesoporous silica (PIMS) and metal-organic frameworks (MOF).

The newly built DAC plant in California can remove a maximum of 1,000 metric tons of CO₂ per year, the equivalent of removing roughly 200 cars from the road. But by 2050, the IEA predicts many more DAC facilities will be built with the combined ability to remove nearly 1 billion metric tons of CO₂ per year.

“We need to scale this technology up by approximately six orders of magnitude to have the needed climate impact,” says Pamela Chu, coordinator of NIST’s Carbon Accounting and Decarbonization Program. “More research and development are needed to make this technology as efficient and economically viable as possible.”

NIST’s testing apparatus, first described in 2023 in the journal Industrial & Engineering Chemistry Research, is designed to put solid sorbents through their paces. Research chemist Jeffrey Manion, who helped create it, said it provides among “best-in-the-world measurements” to determine “exactly how well the material does in adsorbing carbon.”

For the RGTMs, the first of which are expected next year, NIST researchers will test sorbents commonly used in the DAC industry.

An RGTM is an early-stage reference material that can lead to a standard reference material (SRM), which is more thoroughly characterized and measured and comes with a certificate of analysis.

NIST research chemist Elisabeth Mansfield said the agency might eventually develop SRMs for DAC sorbents but, at this point, is working to provide the fast-growing and highly competitive industry with reference material as quickly as possible.

“Many companies right now are developing new types of sorbents,” she said. “They will want to know they work in the lab before they scale up. These RGTMs will let them test their lab equipment and give them confidence in their measurements.”

See the full article here.

Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct.

five-ways-keep-your-child-safe-school-shootings

Please help promote STEM in your local schools.

Stem Education Coalition

NIST Campus, Gaitherberg, MD.

The National Institute of Standards and Technology‘s Mission, Vision, Core Competencies, and Core Values

Mission

To promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life.

NIST’s vision

NIST will be the world’s leader in creating critical measurement solutions and promoting equitable standards. Our efforts stimulate innovation, foster industrial competitiveness, and improve the quality of life.

NIST’s core competencies

Measurement science
Rigorous traceability
Development and use of standards

NIST’s core values

NIST is an organization with strong values, reflected both in our history and our current work. NIST leadership and staff will uphold these values to ensure a high performing environment that is safe and respectful of all.

Perseverance: We take the long view, planning the future with scientific knowledge and imagination to ensure continued impact and relevance for our stakeholders.
Integrity: We are ethical, honest, independent, and provide an objective perspective.
Inclusivity: We work collaboratively to harness the diversity of people and ideas, both inside and outside of NIST, to attain the best solutions to multidisciplinary challenges.
Excellence: We apply rigor and critical thinking to achieve world-class results and continuous improvement in everything we do.

Background

The Articles of Confederation, ratified by the colonies in 1781, contained the clause, “The United States in Congress assembled shall also have the sole and exclusive right and power of regulating the alloy and value of coin struck by their own authority, or by that of the respective states—fixing the standards of weights and measures throughout the United States”. Article 1, section 8, of the Constitution of the United States (1789), transferred this power to Congress; “The Congress shall have power…To coin money, regulate the value thereof, and of foreign coin, and fix the standard of weights and measures”.

In January 1790, President George Washington, in his first annual message to Congress stated that, “Uniformity in the currency, weights, and measures of the United States is an object of great importance, and will, I am persuaded, be duly attended to”, and ordered Secretary of State Thomas Jefferson to prepare a plan for Establishing Uniformity in the Coinage, Weights, and Measures of the United States, afterwards referred to as the Jefferson report. On October 25, 1791, Washington appealed a third time to Congress, “A uniformity of the weights and measures of the country is among the important objects submitted to you by the Constitution and if it can be derived from a standard at once invariable and universal, must be no less honorable to the public council than conducive to the public convenience”, but it was not until 1838, that a uniform set of standards was worked out. In 1821, John Quincy Adams had declared “Weights and measures may be ranked among the necessities of life to every individual of human society”.

From 1830 until 1901, the role of overseeing weights and measures was carried out by the Office of Standard Weights and Measures, which was part of the U.S. Coast and Geodetic Survey in the Department of the Treasury.

Bureau of Standards

In 1901 in response to a bill proposed by Congressman James H. Southard (R- Ohio) the National Bureau of Standards was founded with the mandate to provide standard weights and measures and to serve as the national physical laboratory for the United States. (Southard had previously sponsored a bill for metric conversion of the United States.)

President Theodore Roosevelt appointed Samuel W. Stratton as the first director. The budget for the first year of operation was $40,000. The Bureau took custody of the copies of the kilogram and meter bars that were the standards for US measures, and set up a program to provide metrology services for United States scientific and commercial users. A laboratory site was constructed in Washington DC (US) and instruments were acquired from the national physical laboratories of Europe. In addition to weights and measures the Bureau developed instruments for electrical units and for measurement of light. In 1905 a meeting was called that would be the first National Conference on Weights and Measures.

Initially conceived as purely a metrology agency the Bureau of Standards was directed by Herbert Hoover to set up divisions to develop commercial standards for materials and products. Some of these standards were for products intended for government use; but product standards also affected private-sector consumption. Quality standards were developed for products including some types of clothing; automobile brake systems and headlamps; antifreeze; and electrical safety. During World War I, the Bureau worked on multiple problems related to war production even operating its own facility to produce optical glass when European supplies were cut off. Between the wars Harry Diamond of the Bureau developed a blind approach radio aircraft landing system. During World War II military research and development was carried out including development of radio propagation forecast methods; the proximity fuze and the standardized airframe used originally for Project Pigeon; and shortly afterwards the autonomously radar-guided Bat anti-ship guided bomb and the Kingfisher family of torpedo-carrying missiles.

In 1948, financed by the United States Air Force the Bureau began design and construction of SEAC: the Standards Eastern Automatic Computer. The computer went into operation in May 1950 using a combination of vacuum tubes and solid-state diode logic. About the same time the Standards Western Automatic Computer, was built at the Los Angeles office of the NBS by Harry Huskey and used for research there. A mobile version- DYSEAC- was built for the Signal Corps in 1954.

Due to a changing mission, the “National Bureau of Standards” became the “ The National Institute of Standards and Technology” in 1988.

Following September 11, 2001, NIST conducted the official investigation into the collapse of the World Trade Center buildings.

Organization

NIST is headquartered in Gaithersburg, Maryland, and operates a facility in Boulder, Colorado, which was dedicated by President Eisenhower in 1954. NIST’s activities are organized into laboratory programs and extramural programs. Effective October 1, 2010, NIST was realigned by reducing the number of NIST laboratory units from ten to six. NIST Laboratories include:

Communications Technology Laboratory (CTL)
Engineering Laboratory (EL)
Information Technology Laboratory (ITL)
Center for Neutron Research (NCNR)
Material Measurement Laboratory (MML)
Physical Measurement Laboratory (PML)

Extramural programs include:

Hollings Manufacturing Extension Partnership (MEP), a nationwide network of centers to assist small and mid-sized manufacturers to create and retain jobs, improve efficiencies, and minimize waste through process improvements and to increase market penetration with innovation and growth strategies;
Technology Innovation Program (TIP), a grant program where NIST and industry partners cost share the early-stage development of innovative but high-risk technologies;
Baldrige Performance Excellence Program, which administers the Malcolm Baldrige National Quality Award, the nation’s highest award for performance and business excellence.

NIST’s Boulder laboratories are best known for NIST‑F1 which houses an atomic clock.

NIST-F1 Atomic Clock.

NIST‑F1 serves as the source of the nation’s official time. From its measurement of the natural resonance frequency of cesium—which defines the second—NIST broadcasts time signals via longwave radio station WWVB near Fort Collins in Colorado, and shortwave radio stations WWV and WWVH, located near Fort Collins and Kekaha in Hawai’i, respectively.

NIST also operates a neutron science user facility: the NIST Center for Neutron Research (NCNR).

NIST Center for Neutron Research.

The NCNR provides scientists access to a variety of neutron scattering instruments which they use in many research fields (materials science; fuel cells; biotechnology etc.).

The SURF III Synchrotron Ultraviolet Radiation Facility is a source of synchrotron radiation in continuous operation since 1961.

NIST SURF III Synchrotron Ultraviolet Radiation Facility.

SURF III now serves as the US national standard for source-based radiometry throughout the generalized optical spectrum. All NASA-borne extreme-ultraviolet observation instruments have been calibrated at SURF since the 1970s, and SURF is used for measurement and characterization of systems for extreme ultraviolet lithography.

The Center for Nanoscale Science and Technology performs research in nanotechnology, both through internal research efforts and by running a user-accessible cleanroom nanomanufacturing facility.

NIST Center for Nanoscale Science and Technology.

This “NanoFab” is equipped with tools for lithographic patterning and imaging (e.g., electron microscopes and atomic force microscopes).
Committees

NIST has seven standing committees:

Technical Guidelines Development Committee (TGDC)
Advisory Committee on Earthquake Hazards Reduction (ACEHR)
National Construction Safety Team Advisory Committee (NCST Advisory Committee)
Information Security and Privacy Advisory Board (ISPAB)
Visiting Committee on Advanced Technology (VCAT)
Board of Overseers for the Malcolm Baldrige National Quality Award (MBNQA Board of Overseers)
Manufacturing Extension Partnership National Advisory Board (MEPNAB)

Measurements and standards

As part of its mission, NIST supplies industry, academia, government, and other users with over 1,300 Standard Reference Materials (SRMs). These artifacts are certified as having specific characteristics or component content, used as calibration standards for measuring equipment and procedures, quality control benchmarks for industrial processes, and experimental control samples.

Handbook 44

NIST publishes the Handbook 44 each year after the annual meeting of the National Conference on Weights and Measures (NCWM). Each edition is developed through cooperation of the Committee on Specifications and Tolerances of the NCWM and the Weights and Measures Division (WMD) of the NIST. The purpose of the book is a partial fulfillment of the statutory responsibility for “cooperation with the states in securing uniformity of weights and measures laws and methods of inspection”.

NIST has been publishing various forms of what is now the Handbook 44 since 1918 and began publication under the current name in 1949. The 2010 edition conforms to the concept of the primary use of the SI (metric) measurements recommended by the Omnibus Foreign Trade and Competitiveness Act of 1988.


Viewing all articles
Browse latest Browse all 160

Trending Articles