From The Rochester Institute of Technology
7.3.24
NY SMART-I Corridor Technology Hub aims to produce a quarter of all semiconductors made in the United States.
RIT
The NY SMART-I Corridor Technology Hub will bring $40 million in federal funding to the region for semiconductor manufacturing, research, and education, U.S. Senate Majority Leader Charles E. Schumer announced July 2 in Rochester. The Buffalo-Rochester-Syracuse coalition will use the funding to further position the area as a global semiconductor superhighway, poised to meet the growing demands of the advanced manufacturing and semiconductor production in the United States.
“This is a monumental victory for the Buffalo-Rochester-Syracuse region as the nation’s first major Tech Hub award,” Schumer said. “America’s semiconductor future runs through the heart of upstate New York along the I-90 corridor.”
Joining Senator Schumer, other dignitaries, and consortium members on Tuesday were RIT Vice President for Research Ryne Raffaelle, RIT Associate Vice President for Government and Community Relations Maya Temperley, and RIT Assistant Vice President for Government and Community Relations Chris Harris.
RIT was one of the early partners to mobilize alongside other higher education institutions, community organizations, and businesses in the region to push for the NY SMART-I Corridor Tech Hub designation spanning the Buffalo, Rochester, and Syracuse regions.
“Now the real work begins as we move toward transforming our region into the leading semiconductor manufacturing hub in the United States,” said RIT President David Munson. “This designation underscores RIT’s shared mission to educate the next generation of students poised to shape the future of the semiconductor industry.”
Schumer, Congressman Joe Morelle, and coalition members are confident the Tech Hub will work to build a world-class semiconductor ecosystem across a range of focus areas, including equitable workforce development and talent placement, and research and commercialization pathways in partnership with leading academic institutions.
The funding that was awarded is part of the CHIPS and Science Act passed by Congress in 2022. In addition to the tri-city region, 11 other metro areas nationwide were awarded $464 million to support technology hubs, which have mostly been limited to large coastal cities.
See the full article here .
Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct.
five-ways-keep-your-child-safe-school-shootings
Please help promote STEM in your local schools.
The Rochester Institute of Technology is a private doctoral university within the town of Henrietta in the Rochester, New York metropolitan area.
RIT is composed of nine academic colleges, including National Technical Institute for the Deaf . The Institute is one of only a small number of engineering institutes in the State of New York, including New York Institute of Technology, SUNY Polytechnic Institute, and Rensselaer Polytechnic Institute. It is most widely known for its fine arts, computing, engineering, and imaging science programs; several fine arts programs routinely rank in the national “Top 10” according to US News & World Report.
The university offers undergraduate and graduate degrees, including doctoral and professional degrees and online masters as well.
The university was founded in 1829 and is the tenth largest private university in the country in terms of full-time students. It is internationally known for its science, computer, engineering and art programs as well as for the National Technical Institute for the Deaf- a leading deaf-education institution that provides educational opportunities to more than 1000 deaf and hard-of-hearing students. RIT is known for its Co-op program that gives students professional and industrial experience. It has the fourth oldest and one of the largest Co-op programs in the world. It is classified among “R2: Doctoral Universities – High research activity”.
RIT’s student population is approximately 19,000 students, about 16,000 undergraduate and 3000 graduate. Demographically, students attend from all 50 states in the United States and from more than 100 countries around the world. The university has more than 4000 active faculty and staff members who engage with the students in a wide range of academic activities and research projects. It also has branches abroad, its global campuses, located in China, Croatia and United Arab Emirates (Dubai).
RIT alumni and faculty members have been recipients of the Pulitzer Prize.
History
The university began as a result of an 1891 merger between Rochester Athenæum, a literary society founded in 1829 by Colonel Nathaniel Rochester and associates and The Mechanics Institute- a Rochester school of practical technical training for local residents founded in 1885 by a consortium of local businessmen including Captain Henry Lomb- co-founder of Bausch & Lomb. The name of the merged institution at the time was called Rochester Athenæum and Mechanics Institute (RAMI). The Mechanics Institute however, was considered as the surviving school by taking over The Rochester Athenaeum’s charter. From the time of the merger until 1944 RAMI celebrated The former Mechanics Institute’s 1885 founding charter. In 1944 the school changed its name to Rochester Institute of Technology and re-established The Athenaeum’s 1829 founding charter and became a full-fledged research university.
The university originally resided within the city of Rochester, New York, proper, on a block bounded by the Erie Canal; South Plymouth Avenue; Spring Street; and South Washington Street (approximately 43.152632°N 77.615157°W). Its art department was originally located in the Bevier Memorial Building. By the middle of the twentieth century, RIT began to outgrow its facilities, and surrounding land was scarce and expensive. Additionally in 1959 the New York Department of Public Works announced a new freeway- the Inner Loop- was to be built through the city along a path that bisected the university’s campus and required demolition of key university buildings. In 1961 an unanticipated donation of $3.27 million ($27,977,071 today) from local Grace Watson (for whom RIT’s dining hall was later named) allowed the university to purchase land for a new 1,300-acre (5.3 km^2) campus several miles south along the east bank of the Genesee River in suburban Henrietta. Upon completion in 1968 the university moved to the new suburban campus, where it resides today.
In 1966 RIT was selected by the Federal government to be the site of the newly founded National Technical Institute for the Deaf (NTID). NTID admitted its first students in 1968 concurrent with RIT’s transition to the Henrietta campus.
In 1979 RIT took over Eisenhower College- a liberal arts college located in Seneca Falls, New York. Despite making a 5-year commitment to keep Eisenhower open, RIT announced in July 1982 that the college would close immediately. One final year of operation by Eisenhower’s academic program took place in the 1982–83 school year on the Henrietta campus. The final Eisenhower graduation took place in May 1983 back in Seneca Falls.
In 1990 RIT started its first PhD program in Imaging Science – the first PhD program of its kind in the U.S. RIT subsequently established PhD programs in six other fields: Astrophysical Sciences and Technology; Computing and Information Sciences; Color Science; Microsystems Engineering; Sustainability; and Engineering. In 1996 RIT became the first college in the U.S to offer a Software Engineering degree at the undergraduate level.
Colleges
RIT has nine colleges:
RIT College of Engineering Technology
Saunders College of Business
B. Thomas Golisano College of Computing and Information Sciences
Kate Gleason College of Engineering
RIT College of Health Sciences and Technology
College of Art and Design
RIT College of Liberal Arts
RIT College of Science
National Technical Institute for the Deaf
There are also three smaller academic units that grant degrees but do not have full college faculties:
RIT Center for Multidisciplinary Studies
Golisano Institute for Sustainability
University Studies
In addition to these colleges, RIT operates three branch campuses in Europe, one in the Middle East and one in East Asia:
RIT Croatia (formerly the American College of Management and Technology) in Dubrovnik and Zagreb, Croatia
RIT Kosovo (formerly the American University in Kosovo) in Pristina, Kosovo
RIT Dubai in Dubai, United Arab Emirates
RIT China-Weihai Campus
RIT also has international partnerships with the following schools:
Yeditepe University İstanbul Eğitim ve Kültür Vakfı] (TR) in Istanbul, Turkey
Birla Institute of Technology and Science [बिरला इंस्टिट्यूट ऑफ़ टेक्नोलॉजी एंड साइंस] (IN) in India
Mother and Teacher Pontifical Catholic University [Pontificia Universidad Católica Madre y Maestra] (DO)
Santo Domingo Institute of Technology[Instituto Tecnológico de Santo Domingo – INTEC] (DO) in Dominican Republic
Central American Technological University [La universidad global de Honduras] (HN)
University of the North [Universidad del Norte] (COL)in Colombia
Peruvian University of Applied Sciences [Universidad Peruana de Ciencias Aplicadas] (PE) (UPC) in Peru
Research
RIT’s research programs are rapidly expanding. The total value of research grants to university faculty reach over $50 million. The university currently offers eight PhD programs: Imaging science; Microsystems Engineering; Computing and Information Sciences; Color science; Astrophysical Sciences and Technology; Sustainability; Engineering; and Mathematical modeling.
In 1986 RIT founded the Chester F. Carlson Center for Imaging Science and started its first doctoral program in Imaging Science in 1989. The Imaging Science department also offers the only Bachelors (BS) and Masters (MS) degree programs in imaging science in the country. The Carlson Center features a diverse research portfolio, its major research areas include Digital Image Restoration; Remote Sensing; Magnetic Resonance Imaging; Printing Systems Research; Color Science; Nanoimaging; Imaging Detectors; Astronomical Imaging; Visual Perception and Ultrasonic Imaging.
The Center for Microelectronic and Computer Engineering was founded by RIT in 1986. The university was the first university to offer a bachelor’s degree in Microelectronic Engineering. The Center’s facilities include 50,000 square feet (4,600 m^2) of building space with 10,000 square feet (930 m^2) of clean room space. The building will undergo an expansion later this year. Its research programs include nano-imaging; nano-lithography; nano-power; micro-optical devices; photonics subsystems integration; high-fidelity modeling and heterogeneous simulation; microelectronic manufacturing; microsystems integration; and micro-optical networks for computational applications.
The Center for Advancing the Study of CyberInfrastructure (CASCI) is a multidisciplinary center housed in the College of Computing and Information Sciences. The Departments of Computer science, Software Engineering, Information technology, Computer engineering, Imaging Science and Bioinformatics collaborate in a variety of research programs at this center. RIT was the first university to launch a Bachelor’s program in Information technology in 1991 and the first university to launch a Bachelor’s program in Software Engineering in 1996 and was also among the first universities to launch a Computer Science Bachelor’s program in 1972. RIT helped standardize the Forth programming language and developed the CLAWS software package.
The Center for Computational Relativity and Gravitation was founded in 2007. The CCRG comprises faculty and postdoctoral research associates working in the areas of general relativity; gravitational waves; and galactic dynamics. Computing facilities in the CCRG include gravity Simulator, a novel 32-node supercomputer that uses special-purpose hardware to achieve speeds of 4TFlops in gravitational N-body calculations, and new Horizons [image N/A], a state-of-the art 85-node Linux cluster for numerical relativity simulations.

The Center for Detectors was founded in 2010. The CfD designs, develops and implements new advanced sensor technologies through collaboration with academic researchers, industry engineers, government scientists and university/college students. The CfD operates four laboratories and has approximately a dozen funded projects to advance detectors in a broad array of applications, e.g. astrophysics, biomedical imaging, Earth system science and inter-planetary travel. Center members span eight departments and four colleges.
RIT has collaborated with many industry players in the field of research as well, including IBM, Xerox, Rochester’s Democrat and Chronicle, Siemens, National Aeronautics Space Agency and the Defense Advanced Research Projects Agency (DARPA). In 2005, it was announced by Russell W. Bessette- Executive Director New York State Office of Science Technology & Academic Research (NYSTAR) that RIT will lead the SUNY University at Buffalo and Alfred University in an initiative to create key technologies in microsystems, photonics, nanomaterials and remote sensing systems and to integrate next generation IT systems. In addition, the collaboratory is tasked with helping to facilitate economic development and tech transfer in New York State. More than 35 other notable organizations have joined the collaboratory, including Boeing, Eastman Kodak, IBM, Intel, SEMATECH, ITT, Motorola, Xerox, and several Federal agencies, including as NASA.
RIT has emerged as a national leader in manufacturing research. In 2017, the U.S. Department of Energy selected RIT to lead its Reducing Embodied-Energy and Decreasing Emissions (REMADE) Institute aimed at forging new clean energy measures through the Manufacturing USA initiative. RIT also participates in five other Manufacturing USA research institutes.