Quantcast
Channel: Related – sciencesprings
Viewing all articles
Browse latest Browse all 160

From The European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne] [Europäische Weltraumorganization](EU) And The National Aeronautics and Space Agency: “ESA’s Euclid celebrates first science with sparkling cosmic views”

$
0
0

ESA Space For Europe Banner

From The European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne] [Europäische Weltraumorganization](EU)

And

The National Aeronautics and Space Agency

5.23.24

European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganization](EU)/ The National Aeronautics and Space Agency Euclid Optical / Infrared Astronomy spacecraft.

1
Today, ESA’s Euclid space mission releases five unprecedented new views of the Universe, each revealing amazing new science. The never-before-seen images prove Euclid’s ability to unravel the secrets of the cosmos, enabling scientists to hunt for rogue planets, use lenzed galaxies to study mysterious matter, and explore the evolution of the Universe. The five targets shown here are (clockwise from top left) the Dorado Group, Messier 78, NGC 6744, Abell 2764, and Abell 2390.

Composite image of five astronomical views, three at the top, two at the bottom. All are dotted with stars and galaxies against a black background. Striking features are three bright glowing structures in the first image. The second image has an orange veil-like structure spanning across. In the third we see a stunning spiral galaxy with many arms. The fourth image features light from galaxies lying behind a bright cluster distorted into arcs. And the fifth image shows a variety of galaxies in all shapes and sizes.] CREDIT
ESA/Euclid/Euclid Consortium/NASA, image processing by J.-C. Cuillandre (CEA Paris-Saclay), G. Anselmi.

The new images are part of Euclid’s Early Release Observations. They accompany the mission’s first scientific data, also made public today, and 10 forthcoming science papers. The treasure trove comes less than a year after the space telescope’s launch, and roughly six months after it returned its first full-colour images of the cosmos.

“Euclid is a unique, ground-breaking mission, and these are the first datasets to be made public – it’s an important milestone,” says Valeria Pettorino, ESA’s Euclid Project Scientist. “The images and associated science findings are impressively diverse in terms of the objects and distances observed. They include a variety of science applications, and yet represent a mere 24 hours of observations. They give just a hint of what Euclid can do. We are looking forward to six more years of data to come!”

The full set of early observations targeted 17 astronomical objects, from nearby clouds of gas and dust to distant clusters of galaxies, ahead of Euclid’s main survey. This survey aims to uncover the secrets of the dark cosmos and reveal how and why the Universe looks as it does today.

“This space telescope intends to tackle the biggest open questions in cosmology,” adds Valeria. “And these early observations clearly demonstrate that Euclid is more than up to the task.”

Unprecedented results

Euclid will trace the hidden web-like foundations of the cosmos, map billions of galaxies across more than one-third of the sky, explore how our Universe formed and evolved over cosmic history, and study the most mysterious of its fundamental components: dark energy and dark matter.

The images obtained by Euclid are at least four times sharper than those we can take from ground-based telescopes. They cover large patches of sky at unrivalled depth, looking far into the distant Universe using both visible and infrared light.

“It’s no exaggeration to say that the results we’re seeing from Euclid are unprecedented,” says ESA Director of Science, Prof. Carole Mundell. “Euclid’s first images, published in November, clearly illustrated the telescope’s vast potential to explore the dark Universe, and this second batch is no different.

“The beauty of Euclid is that it covers large regions of the sky in great detail and depth, and can capture a wide range of different objects all in the same image – from faint to bright, from distant to nearby, from the most massive of galaxy clusters to small planets. We get both a very detailed and very wide view all at once. This amazing versatility has resulted in numerous new science results that, when combined with the results from Euclid’s surveying over the coming years, will significantly alter our understanding of the Universe.”

While visually stunning, the images are far more than beautiful snapshots; they reveal new physical properties of the Universe thanks to Euclid’s novel and unique observing capabilities. These scientific secrets are detailed further in a number of accompanying papers released by the Euclid collaboration, made available tomorrow on arXiv (linked below), together with five key reference papers about the Euclid mission.

The early findings showcase Euclid’s ability to search star-forming regions for free-floating ‘rogue’ planets just four times the mass of Jupiter; study the outer regions of star clusters in unprecedented detail; and map different star populations to explore how galaxies have evolved over time. They reveal how the space telescope can detect individual star clusters in distant groups and clusters of galaxies; identify a rich harvest of new dwarf galaxies; see the light from stars ripped away from their parent galaxies – and much more.

Euclid produced this early catalogue in just a single day, revealing over 11 million objects in visible light and 5 million more in infrared light. This catalogue has resulted in significant new science.

“Euclid demonstrates European excellence in frontier science and state-of-the-art technology, and showcases the importance of international collaboration,” says ESA Director General Josef Aschbacher. “The mission is the result of many years of hard work from scientists, engineers and industry throughout Europe and from members of the Euclid scientific consortium around the world, all brought together by ESA. They can be proud of this achievement – the results are no small feat for such an ambitious mission and such complex fundamental science. Euclid is at the very beginning of its exciting journey to map the structure of the Universe.”

4

Abell 2390

Euclid’s image of galaxy cluster Abell 2390 reveals more than 50 000 galaxies and shows a beautiful display of gravitational lensing, depicting giant curved arcs on the sky – some of which are actually multiple views of the same distant object. Euclid will use lensing (where the light travelling to us from distant galaxies is bent and distorted by gravity) as a key technique for exploring the dark Universe, indirectly measuring the amount and distribution of dark matter both in galaxy clusters and elsewhere. Euclid scientists are also studying how the masses and numbers of galaxy clusters on the sky have changed over time, revealing more about the history and evolution of the Universe.

Euclid’s cutout view of Abell 2390 shows the light permeating the cluster from stars that have been ripped away from their parent galaxies and sit in intergalactic space. Viewing this ‘intracluster light’ is a specialty of Euclid, and these stellar orphans may allow us to ‘see’ where dark matter lies.

5

Messier 78

This breathtaking image features Messier 78, a vibrant star nursery enveloped in interstellar dust. Euclid peered deep into this nursery using its infrared camera, exposing hidden regions of star formation for the first time, mapping its complex filaments of gas and dust in unprecedented detail, and uncovering newly formed stars and planets. Euclid’s instruments can detect objects just a few times the mass of Jupiter, and its infrared ‘eyes’ reveal over 300 000 new objects in this field of view alone. Scientists are using this dataset to study the amount and ratio of stars and smaller (sub-stellar) objects found here – key to understanding the dynamics of how star populations form and change over time.

6

NGC 6744

In this image Euclid showcases NGC 6744, an archetype of the kind of galaxy currently forming most of the stars in the local Universe. Euclid’s large field-of-view covers the entire galaxy, capturing not only spiral structure on larger scales but also exquisite detail on small spatial scales. This includes feather-like lanes of dust emerging as ‘spurs’ from the spiral arms, shown here with incredible clarity. Scientists are using this dataset to understand how dust and gas are linked to star formation; map how different star populations are distributed throughout galaxies and where stars are currently forming; and unravel the physics behind the structure of spiral galaxies, something that is still not fully understood after decades of study.

7

Abell 2764 (and bright star)

This view shows the galaxy cluster Abell 2764 (top right), which comprises hundreds of galaxies within a vast halo of dark matter. Euclid captures many objects in this patch of sky, including background galaxies, more distant clusters, and interacting galaxies throwing off streams and shells of stars. This complete view of Abell 2764 and surroundings — obtained thanks to Euclid’s impressively wide field-of-view — allows scientists to ascertain the radius of the cluster and see its outskirts with faraway galaxies still in frame. Euclid’s observations of Abell 2764 are also allowing scientists to further explore galaxies in the distant cosmic dark ages, as with Abell 2390.

Also seen here is a very bright foreground star that lies within our own galaxy (V*BP-Phoenicis/HD 1973, a star within our galaxy and in the southern hemisphere that’s nearly bright enough to be seen by the human eye). When we look at a star through a telescope, its light is scattered outwards into a diffuse circular halo due to the telescope’s optics. Euclid was designed to make this scatter as small as possible. As a result, the star causes little disturbance, allowing us to capture faint distant galaxies near the line of sight without being blinded by the star’s brightness.

8

Dorado Group

Here, Euclid captures galaxies evolving and merging ‘in action’ in the Dorado galaxy group, with beautiful tidal tails and shells seen as a result of ongoing interactions. Scientists are using this dataset to study how galaxies evolve, to improve our models of cosmic history and understand how galaxies form within halos of dark matter. This image showcases Euclid’s versatility: a wide array of galaxies is visible here, from very bright to very faint. Thanks to Euclid’s unique combination of large field-of-view, remarkable depth, and high spatial resolution, it can capture tiny (star clusters), wider (galaxy cores) and extended (tidal tails) features all in one frame. Scientists are also seeking distant individual clusters of stars known as globular clusters to trace their galactic history and dynamics.

9
On-sky location of Euclid’s 10 first targets. ESA

About Euclid

Euclid is a European mission, built and operated by ESA, with contributions from NASA. The Euclid Consortium – consisting of more than 2000 scientists from 300 institutes in 15 European countries, the USA, Canada and Japan – is responsible for providing the scientific instruments and scientific data analysis. ESA selected Thales Alenia Space as prime contractor for the construction of the satellite and its service module, with Airbus Defence and Space chosen to develop the payload module, including the telescope. NASA provided the detectors of the Near-Infrared Spectrometer and Photometer, NISP. Euclid is a medium-class mission in ESA’s Cosmic Vision Programme.

The science papers are at

Publications

https://www.cosmos.esa.int/web/euclid/ero-public-release

See the full article here .

Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct.


five-ways-keep-your-child-safe-school-shootings


Please help promote STEM in your local schools.

Stem Education Coalition

The European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganization](EU), established in 1975, is an intergovernmental organization dedicated to the exploration of space, currently with 19 member states. Headquartered in Paris, ESA has a staff of more than 2,000. ESA’s space flight program includes human spaceflight, mainly through the participation in the International Space Station program, the launch and operations of unmanned exploration missions to other planets and the Moon, Earth observation, science, telecommunication as well as maintaining a major spaceport, the Guiana Space Centre at Kourou, French Guiana, and designing launch vehicles. ESA science missions are based at ESTEC (NL) in Noordwijk, Netherlands, Earth Observation missions at ESRIN in Frascati, Italy, ESA Mission Control (ESOC) is in Darmstadt, Germany, the European Astronaut Centre (EAC) that trains astronauts for future missions is situated in Cologne, Germany, and the
European Space Astronomy Centre is located in Villanueva de la Cañada, Spain.

ESA’s science fleet of Solar System explorers as of July 2023. Click on image for readable view.[/caption]

The European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganization](EU) Estec, situated in Noordwijk, South Holland, in the western Netherlands.
ESOC control room [The European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganization](EU)].

ESA’s space flight programme includes human spaceflight (mainly through participation in the International Space Station program); the launch and operation of uncrewed exploration missions to other planets and the Moon; Earth observation, science and telecommunication; designing launch vehicles; and maintaining a major spaceport, the The Guiana Space Centre [Centre Spatial Guyanais; CSG also called Europe’s Spaceport) at Kourou, French Guiana. The main European launch vehicle Ariane 5 is operated through Arianespace with ESA sharing in the costs of launching and further developing this launch vehicle. The agency is also working with The National Aeronautics and Space Agency to manufacture the Orion Spacecraft service module that will fly on the Space Launch System.

NASA/ESA Orion Spacecraft depiction.
European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganization](EU)/ NASA/Euclid Optical / Infrared Astronomy spacecraft.
European Space Agency [La Agencia Espacial Europea][Agence spatiale européenne][Europäische Weltraumorganization](EU) GAIA astrometry satellite.
ESA Galileo Spacecraft depiction.

The agency’s facilities are distributed among the following centres:

ESA European Space Research and Technology Centre (ESTEC) (NL) in Noordwijk, Netherlands;
ESA Centre for Earth Observation [ESRIN] (IT) in Frascati, Italy;
ESA Mission Control ESA European Space Operations Center [ESOC](DE) is in Darmstadt, Germany;
ESA -European Astronaut Centre [EAC] trains astronauts for future missions is situated in Cologne, Germany;
European Centre for Space Applications and Telecommunications (ECSAT) (UK), a research institute created in 2009, is located in Harwell, England;
ESA – European Space Astronomy Centre [ESAC] (ES) is located in Villanueva de la Cañada, Madrid, Spain.
European Space Agency Science Programme is a long-term programme of space science and space exploration missions.

Foundation

After World War II, many European scientists left Western Europe in order to work with the United States. Although the 1950s boom made it possible for Western European countries to invest in research and specifically in space-related activities, Western European scientists realized solely national projects would not be able to compete with the two main superpowers. In 1958, only months after the Sputnik shock, Edoardo Amaldi (Italy) and Pierre Auger (France), two prominent members of the Western European scientific community, met to discuss the foundation of a common Western European space agency. The meeting was attended by scientific representatives from eight countries, including Harrie Massey (United Kingdom).

The Western European nations decided to have two agencies: one concerned with developing a launch system, ELDO (European Launch Development Organization) , and the other the precursor of the European Space Agency, ESRO (European Space Research Organization) . The latter was established on 20 March 1964 by an agreement signed on 14 June 1962. From 1968 to 1972, ESRO launched seven research satellites.

ESA in its current form was founded with the ESA Convention in 1975, when ESRO was merged with ELDO. ESA had ten founding member states: Belgium, Denmark, France, West Germany, Italy, the Netherlands, Spain, Sweden, Switzerland, and the United Kingdom. These signed the ESA Convention in 1975 and deposited the instruments of ratification by 1980, when the convention came into force. During this interval the agency functioned in a de facto fashion. ESA launched its first major scientific mission in 1975, Cos-B, a space probe monitoring gamma-ray emissions in the universe, which was first worked on by ESRO.

ESA50 Logo large

Later activities

The European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganization](EU) JUICE spacecraft.

ESA Proba-3 double spacecraft depiction.

The European Space Agency [La Agencia Espacial Europea][Agence spatiale européenne][Europäische Weltraumorganization](EU)/CHEOPS optical spacecraft.

The European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganization](EU) Copernicus mission.

European Space Agency [La Agencia Espacial Europea][Agence spatiale européenne][Europäische Weltraumorganization](EU) Copernicus Sentinels.
The European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganization](EU) Copernicus Sentinel-1B radar satellite.
ESA Copernicus Sentinel-2.
ESA Copernicus Sentinel-3.
The European Space Agency [La Agencia Espacial Europea][Agence spatiale européenn] [Europäische Weltraumorganization] (EU) Copernicus Sentinel-5P.
ESA/Airbus Copernicus Polar Ice and Snow Topography Altimeter CRISTAL Mission depiction.
The European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganization](EU)/The National Aeronautics and Space Agency Sentinel-6 Michael Freilich.
Copernicus Science Center campus.
European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganization](EU) Swarm constellation.
European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganization](EU) Swarm constellation.
ESA’s Laser Ranging Station in Tenerife (ES).

ESA collaborated with National Aeronautics Space Agency on the International Ultraviolet Explorer (IUE), the world’s first high-orbit telescope, which was launched in 1978 and operated successfully for 18 years.

NASA/ESA International Ultraviolet Explorer, launched on 26 January 1978 and shut down in 1996.
ESA Infrared Space Observatory.
ESA Scout HydroGNSS Earth Observation space satellite.

ESA SMOS satellite.

ESA Biomass space satellite.

European Space Agency [La Agencia Espacial Europea][Agence spatiale européenne][Europäische Weltraumorganization](EU)/National Aeronautics and Space Administration Solar Orbiter.
European Space Agency [La Agencia Espacial Europea][Agence spatiale européenne][Europäische Weltraumorganization](EU)/National Aeronautics and Space Administration Solar Orbiter annotated.

A number of successful Earth-orbit projects followed, and in 1986 ESA began Giotto, its first deep-space mission, to study the comets Halley and Grigg–Skjellerup. Hipparcos, a star-mapping mission, was launched in 1989 and in the 1990s SOHO, Ulysses and the Hubble Space Telescope were all jointly carried out with NASA. Later scientific missions in cooperation with NASA include the Cassini–Huygens space probe, to which ESA contributed by building the Titan landing module Huygens.

The European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganization](EU)/Huygens Probe from Cassini landed on Titan.

As the successor of ELDO, ESA has also constructed rockets for scientific and commercial payloads. Ariane 1, launched in 1979, carried mostly commercial payloads into orbit from 1984 onward. The next two versions of the Ariane rocket were intermediate stages in the development of a more advanced launch system, the Ariane 4, which operated between 1988 and 2003 and established ESA as the world leader in commercial space launches in the 1990s. Although the succeeding Ariane 5 experienced a failure on its first flight, it has since firmly established itself within the heavily competitive commercial space launch market with 82 successful launches until 2018. The successor launch vehicle of Ariane 5, the Ariane 6, is under development and is envisioned to enter service in the 2020s.

The beginning of the new millennium saw ESA become, along with agencies like National Aeronautics Space Agency, Japan Aerospace Exploration Agency (JP), Indian Space Research Organization (IN), the Canadian Space Agency(CA) and Roscosmos (RU), one of the major participants in scientific space research. Although ESA had relied on co-operation with NASA in previous decades, especially the 1990s, changed circumstances (such as tough legal restrictions on information sharing by the United States military) led to decisions to rely more on itself and on co-operation with Russia. A 2011 press issue thus stated:

“Russia is ESA’s first partner in its efforts to ensure long-term access to space. There is a framework agreement between ESA and the government of the Russian Federation on cooperation and partnership in the exploration and use of outer space for peaceful purposes, and cooperation is already underway in two different areas of launcher activity that will bring benefits to both partners.”

Notable ESA programs include SMART-1, a probe testing cutting-edge space propulsion technology, the Mars Express and Venus Express missions, as well as the development of the Ariane 5 rocket and its role in the ISS partnership. ESA maintains its scientific and research projects mainly for astronomy-space missions such as Corot, launched on 27 December 2006, a milestone in the search for exoplanets.

On 21 January 2019, ArianeGroup and Arianespace announced a one-year contract with ESA to study and prepare for a mission to mine the Moon for lunar regolith.

Mission

The treaty establishing the European Space Agency reads:

The purpose of the Agency shall be to provide for and to promote, for exclusively peaceful purposes, cooperation among European States in space research and technology and their space applications, with a view to their being used for scientific purposes and for operational space applications systems…

ESA is responsible for setting a unified space and related industrial policy, recommending space objectives to the member states, and integrating national programs like satellite development, into the European program as much as possible.

Jean-Jacques Dordain – ESA’s Director General (2003–2015) – outlined the European Space Agency’s mission in a 2003 interview:

“Today space activities have pursued the benefit of citizens, and citizens are asking for a better quality of life on Earth. They want greater security and economic wealth, but they also want to pursue their dreams, to increase their knowledge, and they want younger people to be attracted to the pursuit of science and technology. I think that space can do all of this: it can produce a higher quality of life, better security, more economic wealth, and also fulfill our citizens’ dreams and thirst for knowledge, and attract the young generation. This is the reason space exploration is an integral part of overall space activities. It has always been so, and it will be even more important in the future.”

Activities

According to the ESA website, the activities are:

Observing the Earth
Human Spaceflight
Launchers
Navigation
Space Science
Space Engineering & Technology
Operations
Telecommunications & Integrated Applications
Preparing for the Future
Space for Climate

Programs

Copernicus Programme
Cosmic Vision
ExoMars
FAST20XX
Galileo
Horizon 2000
Living Planet Programme
Mandatory

Every member country must contribute to these programs:

Technology Development Element Program
Science Core Technology Program
General Study Program
European Component Initiative

Optional

Depending on their individual choices the countries can contribute to the following programs, listed according to:

Launchers
Earth Observation
Human Spaceflight and Exploration
Telecommunications
Navigation
Space Situational Awareness
Technology

ESA_LAB@

ESA has formed partnerships with universities. ESA_LAB@ refers to research laboratories at universities. Currently there are ESA_LAB@

Technische Universität Darmstadt (DE)
École des hautes études commerciales de Paris (HEC Paris) (FR)
Université de recherche Paris Sciences et Lettres (FR)
The University of Central Lancashire (UK)

Membership and contribution to ESA

By 2015, ESA was an intergovernmental organization of 22 member states. Member states participate to varying degrees in the mandatory (25% of total expenditures in 2008) and optional space programs (75% of total expenditures in 2008). The 2008 budget amounted to €3.0 billion whilst the 2009 budget amounted to €3.6 billion. The total budget amounted to about €3.7 billion in 2010, €3.99 billion in 2011, €4.02 billion in 2012, €4.28 billion in 2013, €4.10 billion in 2014 and €4.33 billion in 2015. English is the main language within ESA. Additionally, official documents are also provided in German and documents regarding the Spacelab are also provided in Italian. If found appropriate, the agency may conduct its correspondence in any language of a member state.

Non-full member states
Slovenia
Since 2016, Slovenia has been an associated member of the ESA.

Latvia
Latvia became the second current associated member on 30 June 2020, when the Association Agreement was signed by ESA Director Jan Wörner and the Minister of Education and Science of Latvia, Ilga Šuplinska in Riga. The Saeima ratified it on July 27. Previously associated members were Austria, Norway and Finland, all of which later joined ESA as full members.

Canada
Since 1 January 1979, Canada has had the special status of a Cooperating State within ESA. By virtue of this accord, The Canadian Space Agency [Agence spatiale canadienne, ASC] (CA) takes part in ESA’s deliberative bodies and decision-making and also in ESA’s programs and activities. Canadian firms can bid for and receive contracts to work on programs. The accord has a provision ensuring a fair industrial return to Canada. Canada has continually increased its annual contribution.

Enlargement

After the decision of the ESA Council of 21/22 March 2001, the procedure for accession of the European states was detailed as described the document titled The Plan for European Co-operating States (PECS). Nations that want to become a full member of ESA do so in 3 stages. First a Cooperation Agreement is signed between the country and ESA. In this stage, the country has very limited financial responsibilities. If a country wants to co-operate more fully with ESA, it signs a European Cooperating State (ECS) Agreement. The ECS Agreement makes companies based in the country eligible for participation in ESA procurements. The country can also participate in all ESA programs, except for the Basic Technology Research Programme. While the financial contribution of the country concerned increases, it is still much lower than that of a full member state. The agreement is normally followed by a Plan For European Cooperating State (or PECS Charter). This is a 5-year programme of basic research and development activities aimed at improving the nation’s space industry capacity. At the end of the 5-year period, the country can either begin negotiations to become a full member state or an associated state or sign a new PECS Charter.

During the Ministerial Meeting in December 2014, ESA ministers approved a resolution calling for discussions to begin with Israel, Australia and South Africa on future association agreements. The ministers noted that “concrete cooperation is at an advanced stage” with these nations and that “prospects for mutual benefits are existing”.

A separate space exploration strategy resolution calls for further co-operation with the United States, Russia and China on “LEO” exploration, including a continuation of ISS cooperation and the development of a robust plan for the coordinated use of space transportation vehicles and systems for exploration purposes, participation in robotic missions for the exploration of the Moon, the robotic exploration of Mars, leading to a broad Mars Sample Return mission in which Europe should be involved as a full partner, and human missions beyond LEO in the longer term.”

Relationship with the European Union

The political perspective of the European Union (EU) was to make ESA an agency of the EU. The EU member states provide most of ESA’s funding, and they are all either full ESA members or observers.

History

At the time ESA was formed, its main goals did not encompass human space flight; rather it considered itself to be primarily a scientific research organization for uncrewed space exploration in contrast to its American and Soviet counterparts. It is therefore not surprising that the first non-Soviet European in space was not an ESA astronaut on a European space craft; it was Czechoslovak Vladimír Remek who in 1978 became the first non-Soviet or American in space (the first man in space being Yuri Gagarin of the Soviet Union) – on a Soviet Soyuz spacecraft, followed by the Pole Mirosław Hermaszewski and East German Sigmund Jähn in the same year. This Soviet co-operation programme, known as Intercosmos, primarily involved the participation of Eastern bloc countries. In 1982, however, Jean-Loup Chrétien became the first non-Communist Bloc astronaut on a flight to the Soviet Salyut 7 space station.

Because Chrétien did not officially fly into space as an ESA astronaut, but rather as a member of the French CNES astronaut corps, the German Ulf Merbold is considered the first ESA astronaut to fly into space. He participated in the STS-9 Space Shuttle mission that included the first use of the European-built Spacelab in 1983. STS-9 marked the beginning of an extensive ESA/NASA joint partnership that included dozens of space flights of ESA astronauts in the following years. Some of these missions with Spacelab were fully funded and organizationally and scientifically controlled by ESA (such as two missions by Germany and one by Japan) with European astronauts as full crew members rather than guests on board. Beside paying for Spacelab flights and seats on the shuttles, ESA continued its human space flight co-operation with the Soviet Union and later Russia, including numerous visits to Mir.

During the latter half of the 1980s, European human space flights changed from being the exception to routine and therefore, in 1990, the European Astronaut Centre in Cologne, Germany was established. It selects and trains prospective astronauts and is responsible for the co-ordination with international partners, especially with regard to the International Space Station. As of 2006, the ESA astronaut corps officially included twelve members, including nationals from most large European countries except the United Kingdom.

In the summer of 2008, ESA started to recruit new astronauts so that final selection would be due in spring 2009. Almost 10,000 people registered as astronaut candidates before registration ended in June 2008. Over 8,000 fulfilled the initial application criteria. Of the applicants, over 900 were chosen to take part in the first stage of psychological testing, which narrowed down the field to 200. After two-stage psychological tests and medical evaluation in early 2009, as well as formal interviews, six new members of the European Astronaut Corps were selected – five men and one woman.

Cooperation with other countries and organizations

ESA has signed co-operation agreements with the following states that currently neither plan to integrate as tightly with ESA institutions as Canada, nor envision future membership of ESA: Argentina, Brazil, China, India (for the Chandrayan mission), Russia and Turkey.

Additionally, ESA has joint projects with the European Union, NASA of the United States and is participating in the International Space Station together with the United States (NASA), Russia and Japan (JAXA).

European Union
ESA and EU member states
ESA-only members
EU-only members

ESA is not an agency or body of the European Union (EU), and has non-EU countries (Norway, Switzerland, and the United Kingdom) as members. There are however ties between the two, with various agreements in place and being worked on, to define the legal status of ESA with regard to the EU.

There are common goals between ESA and the EU. ESA has an EU liaison office in Brussels. On certain projects, the EU and ESA co-operate, such as the upcoming Galileo satellite navigation system. Space policy has since December 2009 been an area for voting in the European Council. Under the European Space Policy of 2007, the EU, ESA and its Member States committed themselves to increasing co-ordination of their activities and programs and to organizing their respective roles relating to space.

The Lisbon Treaty of 2009 reinforces the case for space in Europe and strengthens the role of ESA as an R&D space agency. Article 189 of the Treaty gives the EU a mandate to elaborate a European space policy and take related measures, and provides that the EU should establish appropriate relations with ESA.

Former Italian astronaut Umberto Guidoni, during his tenure as a Member of the European Parliament from 2004 to 2009, stressed the importance of the European Union as a driving force for space exploration, “…since other players are coming up such as India and China it is becoming ever more important that Europeans can have an independent access to space. We have to invest more into space research and technology in order to have an industry capable of competing with other international players.”

The first EU-ESA International Conference on Human Space Exploration took place in Prague on 22 and 23 October 2009. A road map which would lead to a common vision and strategic planning in the area of space exploration was discussed. Ministers from all 29 EU and ESA members as well as members of parliament were in attendance.

National space organizations of member states:

The Centre National d’Études Spatiales(FR) (CNES) (National Centre for Space Study) is the French government space agency (administratively, a “public establishment of industrial and commercial character”). Its headquarters are in central Paris. CNES is the main participant on the Ariane project. Indeed, CNES designed and tested all Ariane family rockets (mainly from its centre in Évry near Paris)
The UK Space Agency is a partnership of the UK government departments which are active in space. Through the UK Space Agency, the partners provide delegates to represent the UK on the various ESA governing bodies. Each partner funds its own programme.
The Italian Space Agency A.S.I. – Agenzia Spaziale Italiana was founded in 1988 to promote, co-ordinate and conduct space activities in Italy. Operating under the Ministry of the Universities and of Scientific and Technological Research, the agency cooperates with numerous entities active in space technology and with the president of the Council of Ministers. Internationally, the ASI provides Italy’s delegation to the Council of the European Space Agency and to its subordinate bodies.
The German Aerospace Center (DLR)[Deutsches Zentrum für Luft- und Raumfahrt e. V.] is the national research centre for aviation and space flight of the Federal Republic of Germany and of other member states in the Helmholtz Association. Its extensive research and development projects are included in national and international cooperative programs. In addition to its research projects, the centre is the assigned space agency of Germany bestowing headquarters of German space flight activities and its associates.
The Instituto Nacional de Técnica Aeroespacial (INTA)(ES) (National Institute for Aerospace Technique) is a Public Research Organization specialized in aerospace research and technology development in Spain. Among other functions, it serves as a platform for space research and acts as a significant testing facility for the aeronautic and space sector in the country.

National Aeronautics Space Agency

ESA has a long history of collaboration with NASA. Since ESA’s astronaut corps was formed, the Space Shuttle has been the primary launch vehicle used by ESA’s astronauts to get into space through partnership programs with NASA. In the 1980s and 1990s, the Spacelab programme was an ESA-NASA joint research programme that had ESA develop and manufacture orbital labs for the Space Shuttle for several flights on which ESA participate with astronauts in experiments.

In robotic science mission and exploration missions, NASA has been ESA’s main partner. Cassini–Huygens was a joint NASA-ESA mission, along with the Infrared Space Observatory, INTEGRAL, SOHO, and others.

National Aeronautics and Space Administration/European Space Agency [La Agencia Espacial Europea][Agence spatiale européenne][Europäische Weltraumorganization](EU)/ASI Italian Space Agency [Agenzia Spaziale Italiana](IT) Cassini Spacecraft.
European Space Agency [La Agencia Espacial Europea][Agence spatiale européenne][Europäische Weltraumorganization](EU) Integral spacecraft.
European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganization]((EU)/National Aeronautics and Space Administration Solar and Heliospheric Observatory satellite. Launched in 1995.

Also, the Hubble Space Telescope is a joint project of NASA and ESA.

National Aeronautics and Space Administration/The European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganization](EU) Hubble Space Telescope.

ESA-NASA joint projects include the James Webb Space Telescope and the proposed Laser Interferometer Space Antenna.

National Aeronautics Space Agency/European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganization](EU)/ Canadian Space Agency [Agence Spatiale Canadienne](CA) James Webb Infrared Space Telescope annotated, finally launched December 25, 2021, ten years late.

____________________
ESA/NASA eLISA space based gravitational wave hunter system
Gravity is talking. Lisa will listen. Dialogos of Eide.

ESA LISA Pathfinder technology package.
ESA/LISA Pathfinder.

The European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganization](EU)National Aeronautics and Space Administration eLISA space based, the future of gravitational wave research, due to launch in 2037.


LISA – measuring gravitational waves.
4
The spectrum of gravitational waves
____________________

NASA has committed to provide support to ESA’s proposed MarcoPolo-R mission to return an asteroid sample to Earth for further analysis. NASA and ESA will also likely join together for a Mars Sample Return Mission. In October 2020 the ESA entered into a memorandum of understanding (MOU) with NASA to work together on the Artemis program, which will provide an orbiting lunar gateway and also accomplish the first manned lunar landing in 50 years, whose team will include the first woman on the Moon.

NASA ARTEMIS spacecraft depiction.
The European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganization](EU) European Large Logistics Lander.

Cooperation with other space agencies

Since China has started to invest more money into space activities, the Chinese Space Agency[中国国家航天局] (CN) has sought international partnerships. ESA is, beside, The Russian Federal Space Agency Государственная корпорация по космической деятельности «Роскосмос»](RU) one of its most important partners. Two space agencies cooperated in the development of the Double Star Mission. In 2017, ESA sent two astronauts to China for two weeks sea survival training with Chinese astronauts in Yantai, Shandong.

ESA entered into a major joint venture with Russia in the form of the CSTS, the preparation of French Guiana spaceport for launches of Soyuz-2 rockets and other projects. With India, ESA agreed to send instruments into space aboard the ISRO’s Chandrayaan-1 in 2008. ESA is also co-operating with Japan, the most notable current project in collaboration with JAXA is the BepiColombo mission to Mercury.

The European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU)/Japan Aerospace Exploration Agency [国立研究開発法人宇宙航空研究開発機構](JP) Bepicolumbo in flight illustration. Artist’s impression of BepiColombo – ESA’s first mission to Mercury. ESA’s Mercury Planetary Orbiter (MPO) operated from ESA European Space Operations Center [ESOC](DE).

ESA’s Mercury Planetary Orbiter (MPO) will be operated from ESOC Germany.

Speaking to reporters at an air show near Moscow in August 2011, ESA head Jean-Jacques Dordain said ESA and Russia’s Roskosmos space agency would “carry out the first flight to Mars together.”

Pléiades Neo. Airbus.

For the future

ESA PLATO refracting spacecraft depiction.
ESA UK-led ARIEL mission -Atmospheric Remote-sensing Infrared Exoplanet Large-survey telescopic spacecraft depiction.
A key experiment for the “LIFE” space mission ETH Zurich
ESA Copernicus Imaging Microwave Radiometer mission
Genesis – one of ESA’s FutureNAV missions
ESA LEO-PNT
ESA Galileo L12 space satellite

Viewing all articles
Browse latest Browse all 160

Trending Articles